
AD-AOBI 969 S INTERNATIONAL MENLO PARK CA F/ 9/2

FINANCIAL MANAGEMENT SYSTEM GUIDE. VOLUME II.(U)
JAN 80 R J ROM, H 8 LENTMAN F30602-7-C-OO55

WCLASSIFIE D RADC-TR-79-299-VOL-2 NL,7::m Immimll miollll
llllh~hllElhEI
EllhlEllllEE-
EIIIII EEIII

1 36

IIIIII,.o

11111 (.25 ffj4 I2~

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS-1963-)

RADC-TR.79-299, Vol 11 (of two) o
Final Technkal Ropeo 0.,
January 1980

FINANCIAL MANAGEMENT SYSTEM GUIDE
CSRI International

Raphael J. Rom
Harvey G. Lehtman

[APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED]

' DTIC_

MA 18 1980 A

A -

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command
Griffiss Air Force Base, New York 13441

LJ

80 3 17 227
.-.

This report has been reviewed by the RADC Public Affairs Office (PA)
and is releasable to the National Technical Information Service (NTIS). At
NTIS it will be releasable to the general public, including foreign nations.

RADC-TR-79-299, Vol II (of two) has been reviewed and is approved for
publication.

APPROVED: /

RICHARD CALICCHIA
Proj ect Engineer

APPROVED: ";;::#c4&~
WENDALL C. BAUMAN, Col, USAF
Chief, Information Sciences Division

FOR THE COMMANDER :' . '

JORN P. RUSS
Acting Chief, Plans Office

.1
If your address has changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by your organiza-
tion, please notify RADC (ISIE), Griffiss AFB NY 13441. This will assist
us in maintaining a current mailing list.

Do not return this copy. Retain or destroy.

LAI

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE ("Oen Dets Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUM13ER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

RADC.TR-79-299, Vol II (of two)
4 TITLE (and Subtitle) S. TYPE OF REPORT a PERIOD,OVERED

FINANCIAL MANAGEMENT SYSTEM GUIDE f 7 al Technical Repwt
SFI A M N SJan 78 - 9 Aug 79

7. AUTHOR(a) - S. COTRACT OR GRANT "U R(.)I Raphael J.1Rom 7
pHarve ./Le n / F30602-78-C-0955

9.PERFORMING ORGANIZATI7N NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT. TASK

SRI International ARA4WOKU NUMBERS333 Ravenswood Avenue I R2F (1,.
Menlo Park CA 94025 55d8 006-

If. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DAYS

Rome Air Development Center (ISIE) (Jan1 8/
Griffiss AFB NY 13441 , .62 9

o
f; z ..

Q

14. MONITORIN AGENCY NAME & ADDRESS(II dlfferent fionm Controlltn# Office) IS. SECURITY CLASS. (of this reporrj

Same TH - qle-) 17 M 1 UNCLASSIFIED

12e. DECLASSI FICATION 'DOWNGRADING
-- SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the ebetrect entered In Block 20, it different from Report)

Same

IS SUPPLEMENTARY NOTES

RADC Project Engineer: Richard Calicchia (ISIE)

19. KEY WORDS (Continue on reverse aide I neeesearv and Identify by block rnobp.)

On-line FMS
software engineering augment
programming environments
computers

system software
ZY ABSTRACT (Continue on reveree side If neceeary and Identify by block humber)

This document describes how the Financial Management System (FMS) and its

associated Data Entry System (DES) work from a technical point of view. It is

intended as an aid to system programmers who may be interested in modifying the

existing system in the future. We describe the files involved in the use of

FMS/DES and internal procedures that may be of use to those wishing to extend
the features of the system through the creation of user utility programs.

DD ,A,43 1473 UNCIASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered).,./

.,._ ., _

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(W

h
U Data Entered)

Item 20 (Cont'd)

The first two sections of this document outline the Structure of the FMS
data base. Descriptions are given of the files that make up the data base,
the basic elements (fields and records) that make up files, and special
features supplementing the basic AUGMENT file system to support file and system
integrity.

The third section describes basic system algorithms for creation,
modification, and display of the data base elements. The fourth section
describes the structure of the Data Dictionary, which determines the actual
format of particular data elements. The fifth section describes other data
structures used by the system. The appendix lists the names of system
procedures grouped by function.

STAB

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGElSYIA Date fttlm.0

TABLE OF CONTENTS

INTRODUCTION...............

FMS DATA BASE DESCRIPTION 2

Introduction. 2

Fields. 2

Records 3

System Files and Their Organization. 3

TPO Files 3

Ledger Files 4

Manpower Files 4

Control File. 5

The TPOS Branch........

The LEDGERS Branch. 6

The MANPOWER Branch 6

The NUMBERS Branch. 6

The ACCESS Branch. 7

The LOCKS Branch 7

The TEMPLATES Branch. 7

The REPORTS Branch 8

Accessing the Control File 8

Work File 9

THE FMS FILE SYSTEM: SECURITY MECHANISMS......... 10

Introduction....................................10

File System Integrity........... o..............10

£

Locking the Data Base. 11.

Passwords and User Security Levels. 11

SYSTEM ALGORITHMS AND OPERATION 12

Introduction. 12

Retrieval. 12

Sequences. 12

Displaying and Scrolling. 14

The Display Command. 14

Templates 14

Filters 16

The Scroll Command 17

Searching. 17

Sorting 18

Simulation 18

Reporting. 19

Modification 21

Field Modification 21

Record Manipulation 22

Create/Modify Records. 22

Record Deletion. 23

Moving Records24

Update. 27

Abortion and Validation. 31

Ab rt 0 3

DATA DICTIONARtY.. 33

Introduction.. 33

Field Attributes.. 314

Field Syntax.. 35

Logical Field Extraction 37

Field Descriptions 39

MISCELLANEOUS DATA STRUCTURES.. 43

Field Token. 43

Tpoindex 43

Arrays 43

PR Handle. 43

Lock Structure and Lockstid. 414

APPENDIX: User Procedures and Variables 45

Introduction

INTRODUCTION

ihis document describes how the Financial Management System (FMS) and
its associated Data Entry System (DES) work from a technical point of
v.iew. It is intended as an aid to system programmers who may be
interested in modifying the existing system in the future. We describe
the files involved in the use of FMS/DES and internal procedures that
way be of use to those wishing to extend the features of the system

/' through the creation of user utility programs. We assume the reader is
familiar with FMS/DES as a user, and is acquainted with the AUGMENT sys-

N temn and its associated programming language, L10. (Other documents are
available that describe these subjects.)

The first two sections of this document outline the structure of thle FMS
data base. Descriptions are given of the files that make up the data
base, the basic elements (fields and records) that make up files, and
special features supplementing the basic AUGMENT file system to support
file and system integrity.

The third section describes basic system algorithms for creation, modi-
fication, and display of the data base elements. The fourth section
describes the structure of the Data Dictionary, which determines the ac-
tual format of particular data elements. The fifth section describes
other data structures used by the system. The appendix lists the names
of system procedures grouped by function.

FMS Data Base Description:
Fields and Reeords

FMS DATA BASE DESCRIPTION

Introduction

FMS uses the AUGMENT file system for its data base storage. The
basic data item, called a "field", is represented in a character-
string format. Fields are grouped together into records, each record
being an AUGMENT statement. The following paragraphs describe the 1
organization of fields and records in the entire data base.

Fields

A field is a character-string representation of a data item. Fields
are delimited by left and right field delimiters. The left field
delimiter is usually the concatenation of the field name (all upper
case), a colon, and a space; the right field delimiter is usually an
EOL character. Thus, the left field delimiter for the ENGINEER field
would be "ENGINEER: "1. A list of currently valid field names appears
below in the Data Dictionary section of this document. The following
fields have delimiters which do not follow the rule:

JON (the job order number). The left delimiter for this field is
a left parenthesis as the first character of a statement, followed
by the letter "J". The right delimiter is a right parenthesis.

IDENT (the user ident for manpower charges), and NUMBER (the PR
number). The le't delimiter for these fields is a left
parenthesis as the first character of a statement. The right
delimiter is a right parenthesis.

TITLE (the Effort title). The left delimiter is the first right
parenthesis in the statement followed by a SPACE. The right
delimiter is EOL.

The various data types recognized by FMS are represented as follows:

STRING -- Represented as text. Unless otherwise permitted, all
strings are upper case.

INTEGER -- String representation of the integer.

FLOATING POINT NUMBER -- String representation of a double preci-
sion floating point number.

DATE -- String representation in the form dd-mmm-yy, where dd is
one or two digits representing the day of the month, mmm are the
first three characters of the month's name, and yy are the two
last digits of the year.

2

La-~~1

FMS Data Base Description:
Fields and Records

DOLLAR -- Same representation as integer. (It differs only in the

way FMS formats dollar amounts for output.)

Records

Fields are appended to each other to form records. A record is an
AUGMENT statement. The FMS data base consists of the following
records:

Effort

PR

Ledger-Effort

Ledger-PR

Manpower

All these records have the same internal structure. A field is added
to a record by appending the left delimiter followed by the string
representation of the field and then the field right delimiter to the
record. Deleting a field from a record entails the deletion of the
left and right field delimiters as well as the content of the field
item itself.

If nothing appears between the left and right field delimiters the
field is considered empty. In the ledger, an empty field designates
the removal of a previously existing field.

System Files and Their Organization

Records are grouped together and stored in files. The following
paragraphs describe the structure of the various files that exist in
FMS.

TPO Files

TPO files contain most of the Effort and PR information. (They do
not contain the manpower data; also, eventually the FMS system
will interface to other data base systems.) The data base may
contain an arbitrary number of TPO files.

TPO files are divided into "products". Products are divided into
$ "groups". Groups are divided into "areas". Areas contain Efforts

(which include PRs). The AUGMENT file system provides for such a
structure by the use of branches. Each such branch is headed by a

FMS Data Base Description:
System Files and Their Organization

statement that includes the branch title, possibly preceded by a
branch name in parentheses. The name, if it exists, is also the
branch name of the branch in the AUGMENT addressing scheme.

The most widely used record in the data base is the Effort. An
Effort is equivalent to a contract or a project and may extend
over more than one fiscal year. Efforts are either planned or ac-
tual; planned Efforts are distinguished by the letter "P" at the
end of the JON. Following every Effort are PR records sorted
chronologically according to the estimated start date (which is
one of the PR fields). The earliest PR is called the leading PR.
Every Effort must have at least one PR. The PR record contains
information concerning a given fiscal year while the Effort con-
tains general information as well as summary information about all
PRs in the Effort.

Ledger Files

The system keeps a ledger of all changes made to any Effort or PR.
These are stored in ledger files. Each ledger file belongs to
only one TPO. However, each TPO file may have many ledger files
associated with it. This is because there is much more informa-
tion to be stored in the ledger and there is a limit to file size.
The system automatically creates new ledger files when necessary
(e.g., when the file size is larger than a safe maximum).

The ledger file c)nsists of one ledger branch for each JON. Each
ledger branch has a header consisting of a name only (enclosed in
parentheses). The branch name is the JON, preceded by the letter
L. (This fc.m was determined by the fact that JONs start with a
digit and AUGMENT statement names must start with a letter.) Each
branch consists of Ledger-Effort records, described below.

Data is entered into the ledger with the Update command (see
below) and may be retrieved by the use of the appropriate sequence
generator. (See the description of the History command.) A led-
ger is kept for actual Efforts only. Ledger-Effort records are
never modified; rather, a new Ledger-Effort record is created for
every update. These records look like a regular Effort record,
except that only the fields that have been modified are recorded.
Note that Ledger-Effort records will have a PR only if changes to
the PR were made, and then only the affected PR will be repre-
sented.

Manpower Files

The manpower files are similar in structure to the ledger files.

They consist of manpower branches named with the JON preceded by

4

FMS Data Base Description:
System Files and Their Organization

"MP". The Manpower record itself is a standard FMS record. Data
is entered into the manpower file by the FORM2 subsystem (using
the F2UPDATE procedure). The data may be retrieved via a special
sequence generator. (See the description of the Display command
and sequences below.)

Control File

The control file serves as the center of information ABOUT the
data base. In the control file, the Data Base Administrator con-
trols who may access the data base and what level of access is
permitted; it also contains the actual file names and lock infor-
mation.

Most statements in the control file are named to facilitate access
to them. Name delimiters are always left and right parentheses.
To facilitate searching by content and string matching, informa-
tion should be kept in all upper case.

The following describes each branch in the control file, the mean-
ing of its content, and the associated syntax. Some of these
branches should be changed only by the system (they are "automati-
cally" changed); others are read-only to regular users but can be
modified by the Data Base Administrator.

The TPOS Branch

The TPOS branch provides the mapping between the "generic" TPO
names and the actual file names associated with them. This
branch may be modified only by Data Base Administrators. Each
statement in this branch contains a generic name for a TPO fol-
lowed by an AUGMENT link to the appropriate TPO file. Note
that many generic names can point to the same file, thus al-
lowing for synonyms. The file name portion of the link (with-
out the directory, the extension, and the version number) is
considered the "specific" name of the TPO and is used to find
related files, such as ledgers.

Example:

DEMO <FMSDIRECTORY,TPODEMO.HLS,>

In this example, the generic file DEMO is represented by the
actual file TPODEMO in the FMSDIRECTORY directory. The spe-
cific name is TPODEMO.

5

FMS Data Base Description:
System Files and Their Organization

The LEDGERS Branch

This branch contains links to the various ledger files. It is
maintained automatically by the system. At the first level of
this branch, the specific names of the TPOs are found. Follow-
ing each specific TPO name, there is a plex of links to all the
associated ledger files, with the most recent first.

Example:

(TPODEMO)

<FMSDIRECTORY, TPODEMO-LEDGERFILE3.NLS,>

<FMSDIRECTORY, TPODEMO-LEDGERFILE2.NLS,>

<FMSDIRECTORY, TPODEMO-LEDGERFILEl.NLS,>

The MANPOWER Branch

This branch contains links to the various manpower files. It
may be modified by Data Base Administrators. Each statement in
the branch contains the specific name of the TPO followed by a
link to the associated manpower file.

Example:

(TPODEMO) <FMSDIRECTORY,TPODEMO-MANPOWERFlLE.NLS,>

The NUMBERS Branch

When Efforts are created, the user can supply the system with
the new JON or request that the system create a unique new JON.
These system-supplied JONs are generated by concatenation of
the project number (4 digits), a unique three-digit number, and
the letter P. The unique three-digit number is taken from the
NUMBERS branch of the control file. The statements in this
branch consist of the specific TPO name followed by the "cur-
rent" unique number. (This number is incremented whenever a
new system-generated JON is requested.) This branch is main-
tained automatically by the system.

Example:

(TPODEMO) 173

6

FMS Data Base Description:
System Files and Their Organization

The ACCESS Branch

This branch contains the information concerning access to the
data base. The Data Base Administrator may modify this branch.
The statements in this branch consist of the user's AUGMENT
ident within parentheses, followed by the FMS password and then
the access level assigned to the user. All the information
must be upper case.

Example:

(ROM) ROMSPASSWORD 3

The LOCKS Branch

This branch contains the various locks of the data base. It is
maintained automatically by the system. The locking mechanism
is described below. The syntax of the lock is as follows:

The JON of the locked Effort, preceded by a J and surrounded
by parentheses.

The name of the user who has locked the Effort.

Date and time the Effort was locked.

Link to the statement in the data base where the Effort
belongs. (This link includes an AUGMENT Statement Identi-
fier (SID); hence, renumbering of SIDs is prohibited for any
files that have any locks.)

A code character indicating the type of lock: M for Modify
or C for Create.

0
Optional comment.

I
Example:

(J55555555) ROM 1-Jan-79 14:32 <FMSDIRECTORY,TPODEMO.NLS,09
> C This is an optional comment

The TEMPLATES Branch

This branch contains the filters that are provided by the sys-
tem for displaying of data. (See the description of Display
command below.) It is maintained by the Data Base
Administrator. Two types of filters currently exist: built-in
and recognized. The built-in filters are those that are known

7

C' i
4 0

FMS Data Base Description:

System Files and Their Organization

to and hard-coded into the system. In addition, a filter can
be added to the control file and be made accessible by all
users. These filters are placed in the "recognized" branch.
(The name "recognized" is due to the fact that the names of
these filters are recognized by the FMS Frontend processor. A
regular user cannot distinguish between the two types.) The
FMS User Guide specifies how to write such filters.

Example:

(BUILTINS)

(CONTRACTOR-LIST)

!JON IPERFORMER

(RECOGNIZED)

(VALUE)

!JON !TITLE !VALUE

The REPORTS Branch

This branch, maintained by the Data Base Administrator, con-
sists of two sub-branches for built-in and recognized reports
(just as is t'e case with filters). However, instead of the
report templa'e itself, these branches contain links to the re-
ports. (This is because report templates are lengthy and the
control file should remain as small as possible.)

Example:

(BUILTINS)

(JB) <FMSDIRECTORY, JBREPORTTEMPLATE.NLS, 1>

(RECOGNIZED)

(MYSPECIAL) <ROM,SPECIALREPORT.NLS,TEST>

Accessing the Control File

In general, programmers do not have to access the control file
directly. Primitives exist in the FMS system to provide all
the necessary information. (See below for a list of these.)

Since the data base operation relies heavily on the information

8 .. .

FMS Data Base Description:
System Files and Their Organization

in the control file, it is important that the fiue remain ac-
cessible to all users most of the time. The control file is
accessed for write only in the following cases:

Creation of default JONs.

Locking of Efforts (for creation, modification, and
deletion).

Unlocking of Efforts (in update or abort).

Work File

The work file is the user's scratch area. It is created automati-
cally by the system when a user first enters FMS/DES and remains
in his/her directory forever after. It is never deleted and will
never be archived.

The information in the work file is considered private, and there-
fore the file is protected so that only the user to whom it
belongs can access it.

The work file is used in a variety of ways and has no prescribedstructure or constraints on its contents. It is the responsibil-

ity of the various operations that involve the work file to main-
tain the required information. Generally, whenever an FMS-related
process needs temporary file space, the work file is used.

The FMS File System: Security Mechanisms

THE FMS FILE SYSTEM: SECURITY MECHANISMS

Introduction

The file system used by FMS is based on the AUGMENT structured file
system. However, since FMS is primarily a data base management sys-
tem, it has many special requirements centered around preserving file
integrity during access and modification of system data by many
users. Therefore the FMS system enhances the AUGMENT file system by
providing special primitives to perform basic operations. These op-
erations include opening, closing, and updating of files, as well as
the deletion of modifications to the data base.

File System Integrity

A data base is vulnerable to unexpected and undesired modification
during an actual write operation to the data base itself.
Vulnerability in this case means that the computer system crashes and
leaves the data base in an undefined state. To ensure the integrity
of the data base, the periods when system files are vulnerable are
minimized. This is accomplished by adhering to the following
algorithm whenever data must be written into the data base:

1. Prepare the data to be written in the work file or identify the
data to be moved in the data base. (This requires data base read
access only.)

2. Identify the iestination of the data in the data base. (Again,
only read access is required.)

3. Reopen all the appropriate files for write. This operation is
performed by the special procedure WRTOPEN. If the file is locked
by someone else, another attempt to gain access will be made after
a delay. If it is then still unavailable, the process will be
aborted. If the file is not locked, the procedure ensures that
the highest version of the file has been obtained before actual
writing of data takes place. This procedure eliminates the con-
flicts of simultaneous write access to the files.

4. Update the actual data base files.

If more than one file is involved, steps 1 and 2 are performed for
all files, then step 3 is performed for all files, and finally step 4
is performed for all files.

Following the above algorithm results in a very short vulnerable pe-
riod, the duration of step 4. If only one file is involved, the data
is completely safe since an old version is always available. If many
files are involved, the computer may crash after some files were

10

The FMS File System: Security Mechanisms

successfully updated while others were not. While such situations
cannot be eliminated completely, we have minimized their probability
by restricting the times during which data is in the process of' being
written onto files in the data base. Note that before step 14 is exe-
cuted, one can always use the AUGMENT "Delete Modifications" command
on all relevant files to preserve file system integrity. In fact, if
it ever happens that the computer crashes while writing on any of the
files in the data base, the safest thing is to Delete Modifications
in all files.

Locking the Data Base

Beyond the preservation of data base integrity at the file level,
data base integrity must be preserved at the record level. Hence a
locking mechanism is devised to ensure that no two users will simul-
taneously gain write access to the same record. When a user wishes
to modify an Effort, the control file is checked for lock informa-
tion. If the record is locked by another user, write access is
denied to the requestor. If no one else has the file locked, a lock
is placed in the control file and the requestor is granted the ac-
cess.

Note that record locking is separate from file locking: different
users can lock different Efforts in the same file. However, for
safety reasons, every user may have at most one Effort locked. See
the description of the lock below.

Passwords and User Security Levels

Further data base security is provided through restrictions to system
access. In order to enter the system, the user must provide a
password that is separate (and preferably distinct) from his/her
login password. Only users who are recognized by the system can ac-
cess the data.

Once identified by the system, every user is assigned access capabil-
ities. The system currently identifies two levels: read and write.
Some users may only read the data and never modify it. It would be
possible to limit the use of more sensitive commands to privileged
users.

System Algorithms and Operation:
Retrieval

SYSTEM ALGORITHMS AND OPERATION

Introduction

This section describes the basic algorithms for the various commands
available in FMS/DES. It is divided into two subsections, concerned
with retrieval and modifications. Whereas retrieval is done mainly
in FMS and modifications to the data base are done mainly in DES,
some operations (such as simulation) are common to both systems.

Retrieval

Sequences

Retrieval operations on data bases are often done on a set of re-
cords which, from the system's standpoint, are unordered (i.e.,
are not stored consecutively or otherwise linked together). To fa-
cilitate various data base applications, the system must provide a
standard way of handling such sets, allowing the user to first
define the set and then request the system to hand over the rele-
vant records to an application procedure, one at a time. The AUG-
MENT sequencing mechanism utilizing sequence generators lends it-
self to the definition of such sets, and FMS makes extensive use

of these sequence generators. To that end a few sequence genera-
tors are available in FMS and serve to generate various portions
of the TPOs, the ledger, and the manpower data. These generators
are described be.'w.

The basic sequence generator allows for the generation of an ar-
bitrary set of branches and is used to generate both the TPO data
and the ledger data. A source array (see below), containing
branches of records to be considered, must be constructed
beforehand, and serves as the initial definition of the set. For
the TPO data this source array is usually user specified, and the

procedure CNVSOURCES converts the AUGMENT Frontend Processor rep-
resentation of the sources into the standard FMS array format.
For the ledger the procedure MKLDGARRAY assists in constructing a
source array for all branches referring to a given contract (even
with renamed JONs). After the source array is specified, the use
of the basic sequence generator takes over the processing.

To initialize the generator, the procedure MKSRCSEQ must be called
and passed the source array, two (optional) filters, and a simula-
tion flag. The sequence handle returned should be used to identify
the set when records are requested (using the procedure NEXT).
The sequence generator works as follows:

12

- - --~~- -- , -I-

System Algorithms and Operation:
Retrieval

Each statement identifier (STID) in the source array represents
a branch, and all the statements in that branch, including the
header, will be generated.

For each such branch, an auxiliary sequence is opened (one at a
time) with the designated viewapecs and the first filter, if
any, as a content analyzer.

Every time a record has to be generated, the auxiliary sequence
generator is checked; if the sequence has not been exhausted, a
record is generated and passed through the second filter. If
the auxiliary sequence is exhausted, a new sequence will be
opened for the next branch in the source array.

If simulation is requested, then before a statement is returned
from the generator (and after it has passed the filters), the
work file is checked to see whether a statement with an identi-
cal name exists there. If it does then the work file statement
is returned; otherwise, the original statement is returned.

This double filtering allows screening records in two steps before
they are passed for further processing. This mechanism is
advantageous as it allows a quick, initial checking in the first
step and a more elaborate check at the second step. A host of
procedures in a filter format are available within FMS. Note that
using the send (or sport) mechanism in the specified filters
defeats further filtering and simulation. Thus, if the first fil-
ter "sends", the second filter will not be invoked. If either
filter "sends", simulation cannot be performed.

The basic sequence generator provides an efficient mechanism to
generate a sequence of arbitrary FMS records. Manpower data poses
a different problem as it is stored in a separate data base, but
in many cases the manpower data needs to be viewed in the context
of the TPO data. Manpower data belonging to a given JON should be
presented together with other data belonging to the same JON. A
sequence generator to do just that, the MPSEQGEN, is provided.
This sequence generator is similar to the standard AUGMENT INCLUDE
sequence generator.

Its operation is essentially as follows: The sequence generator
deploys two other generators called the primary and auxiliary.
The primary sequence generator will generate all the statements in
the structure as specified by the user when the sequence is
opened. The primary sequence generator obeys all viewspecs except
for i and 0 (i.e., it does not filter or invoke another sequence
generator). After the last PR of an Effort is generated, the se-
quence generator searches for a matching manpower record; if one

13

System Algorithms and Operation:
Retrieval

is found, an auxiliary sequence generator is opened and its state-
ments are returned until exhausted. If a matching manpower record
is not found, an auxiliary sequence is not opened and statements
from the primary sequence will continue to be generated. (Simula-
tion is currently not supported on manpower data.) This sequence
generator is currently used when manpower data is requested in the
standard FMS Display command. It is, however, a standard mecha-
nism to merge data from different data bases both on the same host
and cross-network.

Displaying and Scrolling

Displaying and scrolling are the basic user-oriented retrieval op-
erations (triggered by the Display and Scroll commands). These
commands use the standard AUGMENT screen formatting mechanism for
their operations and do not provide for any data reordering; rath-
er, the data appears as it happens to be stored in the data base
(i.e., no ordering of Efforts and PRs according to estimated start
date).

The Display Command

The Display command works as follows:

The template source for the filter is identified, "compiled"

(see below), and stored temporarily.

The universil filter (procedure TEMAPLY) is instituted as
the current content analyzer.

If manpower data is required, the appropriate sequence gen-
erator (see above) is instituted as the current sequence
generator.

Scrolling related information is reset. (The scroll stack
is reset and the scroll filter set to TRUE.)

Effectively, a Jump is performed with the appropriate view-
specs.

Templates

A template, in the context of the Display command, is a simple
textual description of record formatting that controls the for-
mat in which records are converted from the internal represen-
tation to a human-readable form. When a template is applied to
a given record, an output text is generated according to the
formatting directives of the template. Details of the syntax

14

System Algorithms and Operation:
Retrieval

of templates is given in the FMS User Guide. Since the textual
representation of templates as specified by the user is quite
inefficient for machine use, a compilation process is devised
that converts this text into an internal data structure which
we now describe.

A template may consist of several statements, each to be ap-
plied to different records of the data base. Each such state-
ment consists of noise text which is copied verbatim into the
output stream, and field designators that will be replaced by
the appropriate field value when the template is applied to a
record. A template can therefore be divided into "entries",
each of which contains a field designation along with the noise
text that precedes it (either of which can be empty). A
template entry is compiled into a three-word data structure as
follows:

word 1: Character count for the beginning of noise text

word 2: Character count to the end of noise text

word 3: Left half is field token (type) or procedure ad-
dress and right half is field width.

The first two words (character counts), when used as second
words of L10 text pointers to the source statement, will con-
struct text pointers that delimit the noise text. The field
token is the identifier used for retrieval of fields from re-
cords. (See Data Dictionary below.) If a procedure rather
than a field is designated, the address is stored here. The
width is the number of characters into which the field should
be filled. An entry with no noise text will have the text
pointers surrounding a null string (i.e., they would point to
the same character). An entry without a field token or re-
trieval procedure will have a 0 in the third word.

The entire template data structure is as follows:

Number of (three-word) entries in this template statement.

STID of the source template (this is the first word of the
text pointers)

entry 1 (3 words)

entry n (3 words)

15

-- -- 1=

System Algorithms and Operation:
Retrieval

Filters

The universal filter is the procedure TEMAPPLY, which serves as
a content analyzer. As a content analyzer, it is called for
every statement in a structure. For the current statement, it
will do the following:

Identify the statement being passed as containing an Effort
record, a PR record, or a manpower record.

For a PR record, will check whether the project, pec, and
fiscal year match those stored in the globals globproject,
globpec, globfy.

Call the procedure TEMFILL to fill the template, passing the
appropriate compiled structure.

Set scrolling information. (See description of Scroll
below.)

Return the formatted text using the "send" mechanism. (The
content analyzer as such always returns FALSE.)

The actual filling of the template is done in the TEMFILL pro-
cedure, which receives as parameters the compiled data struc-
ture and the STID of the record from which data should be ex-
tracted. The *rocedure goes over all the entries in the
compiled data rtructure and generates a string containing the
noise text as specified in the template and the value of the
retrieved data. Thus, the following is performed for each
template entry: Two text pointers are constructed; the first
word is the STID found in the beginning of the template data
structure and the second words are those in word 1 and word 2
of the entry. The corresponding text is appended to the output
string.

The LH of the third word is examined:

If it is zero, the current entry processing is done.

If it represents a procedure, the procedure is called. The
arguments to the called procedures are: the output string
(to which the procedure should append text if necessary),
the STID from which data should be extractet, and the width
of the field. If the procedure returns FALSE, the filling
process is aborted for this statement (by returning FALSE).
If the procedure returns TRUE, the processing of the entry
is complete.

16

= -- '--qT

System Algorithms and Operation:
Retrieval

If it represents a field token, the field is retrieved and
formatted according to the width specified in the entry and
the type of the field. If the field length is greater then
allocated, it is truncated from the right. Dollar amounts
are right justified; all other fields are left justified.
If the requested field does not exist, dashes will be in-
serted instead of the field value.

A template, as described earlier, may consist of various state-
ments, each to be applied to a different record (Effort, PR,
etc.). This, however, does not preclude the use of PR fields

in the Effort template and vice versa. The following
convention is used in such cases:

An Effort field requested in a PR template will be extracted
from the "owning" Effort.

A PR field appearing in a Effort template will be extracted
from the leading PR.

The Scroll Command

The Scroll command, described in the FMS User Guide, is
complementary to the Display command. It moves along the data
structure without changing the filter that is in effect. Asso-
ciated with the Scroll command is an array used as a stack (the
scroll stack). The first word is an entry count and the en-
tries are STIDs, each representing an STID that is or was on
the bottom of the screen.

The scrolling is performed by instituting a filter (the
SCRLFILTER) different from the one used in the Display command.
This filter changes the current statement in the sequence to
the one found on top of the scroll stack and institutes the
TEMAPPLY as the current content analyzer. (See Display,
above.) The net result is that the statement that previously
appeared on the bottom of the screen will now appear on the
top.

Scrolling backwards pops statements from the scroll stack.
Scrolling forward adds the new STID to the top of the stack.

Searching

Searching the data base is performed by one central procedure,
CFIND. The searching algorithm is performed on a portion of the
data base described by a source array. A sequence is set up to
produce all the records indicated in the source array. For each

17

System Algorithms and Operation:
Retrieval

such record a value of a given field is extracted and the relation
is tested. If the record passes the test, the Effort to which it
belongs is copied to the work file. If the domain includes the
work file itself, then all records in the work file that do not
pass the test are removed from the work file.

The testing mechanism recognizes four relational operators: equal,
greater than, less than, and present. Each of these can be pre-
ceded by a negation operator. Eight possible relations are pro-
vided as primitives: present, absent, greater than, not greater
than (less than or equal to), less than, not less than (greater
than or equal to), equal, and not equal. More elaborate relations
can be performed by successive applications of primitive testing.
The relations (other than absent and present) are tested according
to the field type: numeric data is tested numerically, strings
are tested lexicographically, and dates are tested
chronologically. These tests are performed at the low level pro-
cedure TESTRELATION.

Sorting

FMS sorting uses the sorting mechanism provided by AUGMENT. This
mechanism relies on a sort key, a program similar to the content
analyzer. A sort key program for FMS is provided (the FMSSKEY
procedure).

Two parameters govrern the sorting: the type of field to sort Dy
(the variable SRTTYPE) and an inverse flag (the variable
SRTINVERSE). The AUGMENT sorting mechanism invokes the sort key
for every statement being sorted. The sort key attempts to ex-
tract the given field from that statement and sorts according to

its type: numeric fields (integer, dollar amounts, and floating
point numbers) according to their numeric value, dates according
to their chronological representation, and strings according to
lexicographical order (case independent). If the field does not
exist in the statement, it will be put at the end of the sort in
no particular order. If the inverse flag is set, the sorting will
be in the reverse order, except for statements which do not in-
clude the specified field -- these will be put at the end of the
sort.

The procedure FMSSORT provides the user interface to the sorting

of FMS data branches.

Simulation

Simulation is the operation of testing, modifying, and using the

18

System Algorithms and Operation:
Retrieval

data without actually modifying the data base. This is done in
FMS by placing a copy of the simulated Effort in the work file and
requesting simulation from the appropriate commands.

When data is gathered for the various reporting commands, it can
be obtained from either the data base (true data) or from the work
file (simulated data). The general sequence generator (see sec-
tion above) has the mechanisms to perform this function, invisible
to the processing routines. A user can open the sequence using
that sequence generator, then set the SEQSIMULATE flag to TRUE and
receive the simulated data. If the flag is set to FALSE, actual
(non-simulated) data will be provided. Note that simulation is
done on all records present in the work file, independent of how
they got there. Hence, the Find command that places FMS records
in the work file can serve as a tool identifying records for simu-

lation.

In order to modify the data (for simulation purposes), the stan-
dard modification mechanisms are used.

Reporting

FMS makes extensive use of the general AUGMENT report generation
facilities, which rely on the existence of a report template and
directives for filling in that template. All reports require a
domain of records to work on. These take the form of a source
array, of the kind used elsewhere in FMS. A sequence to generate
all the records in that domain is opened (using the general se-
quence generator so that simulation is available) and passed to
the report-filling mechanism in the standard way (using the proce-
dure CFILL).

The reporting facility works in a fashion similar to the display
mechanism: the system distinguishes between built-in templates
and those not within the system. The built-in templates are dif-
ferent from the others in that some of the data that goes into the
report is collected from the ustr beforehand at the AUGMENT
Frontend level, thereby reducing the communication between the
user and FMS once the template filling has begun. Those templates
not built-in are divided into those recognized (where the CML
knows the name of the report) and those provided by users.

The AUGMENT reporting facility has a standard mechanism to extract
data from data bases. FMS provides a set of procedures to inter-
face the template-filling process with its associated data bases.
These procedures enable the user to extract a field from a record,
get the next record in a sequence, find Efforts in the TPO, etc.

19

.. '"

System Algorithms and Operation:
Retrieval

Together with the processing available at the template-filling
level, these procedures provide a general facility for users to
generate arbitrarily complex reports.

The current system implements two reports in a different (hard-
coded) fashion: the Sum and History command reports. The History
command report provides a summary of ledger information. It is
implemented on an experimental basis and hence it is hard-coded.
Eventually, it will be converted to a regular report which uses
the sequence generator that traces the ledger. The Sum command
reports the sum of a given numeric field over a set of (possibly
simulated) records. It is implemented separately to increase pro-
cessing efficiency of what is a very basic operation. These two
reports arz; discussed in greater detail in the FMS User Guide.

20

4,

System Algorithms and Operation:
Modification

Modification

Field Modification

Once a record has been placed in the work file (either after a
Create or Modify took place in DES or as a result of searching or
simulation in FMS), the fields that comprise it can be edited.
This is done by the Increment, Decrement, or Set commands, which
are implemented internally through the procedures CINCFIELD and
CSETFIELD.

Setting a field requires the verification of the syntax of its new
contents and then the insertion of the new field. If the field
previously existed, a new value replaces the old; otherwise, a new
field, including the left and right field delimiters, is added to
the record. The following is checked before the setting action is
complete:

Attempts to set values for the JON are rejected. Only the Up-
date commands may set a JON.

Before any of the PR dates are set (i.e., pre-initiation, ini-
tiation, commitment, and obligation), the PR record is tested
to ensure that the type of buy is set.

Upon setting any of the dates mentioned above, the estimated
start date is automatically set (or changed). The new esti-
mated start date is the date being set plus an offset, which is
dependent on the type of buy (specified in another field in the
PR). These offsets are defined as constants in the FMS system
and are based on actual experience at RADC.

Fields can also be modified by incrementing or decrementing cur-
rent values. In this case, the system will evaluate the current
field value, add or subtract the increment or decrement, and pro-
ceed with the regular field-setting algorithm, including the veri-
fication of the new value. Increments are meaningful only for nu-
meric data and dates (in the latter case, the increment is in
days). If a field is empty, the increment process assumes its
current value to be 0. (An empty date field is undefined.)

Another way to modify a field is to remove it altogether. How-
ever, removal is not the opposite of insertion since the operation
must be recorded in the ledger. The following algorithm is used
for field removal:

1. Verify that the field is removable. Information concerning
which fields may be removed is stored in the Data Dictionary.

21

System Algorithms and Operation:
Modification

2. The field is removed from the record by removing the field
contents and both of its field delimiters.

3. If the field was previously present and ledger information
is being constructed, an empty field (with nothing between the
left and right field delimiters) is appended to the ledger re-
cord.

Record Manipulation

Mechanisms are provided to manipulate the records that make up the

data base. These mechanisms enable programs tu create new re-
cords, modify existing records, move records within the data base,
and delete records from the data base. The following sections
elaborate on these features.

Create/Modify Records

The basic mechanisms to modify the data base are the Create and
Modify commands. Create is used to generate new records in the
data base, while Modify is used to edit already existing re-
cords. In both cases a scratch copy of a record is put in the
work file, and is then manipulated by the user. It is finally
incorporated into the data base via the Update command. While
most of the operations performed after issuing the Create and
Modify commands are identical, some slight differences exist.
The global flag MODMODE is therefore set to TRUE if an Effort
is being modified and set to FALSE when it is being created.
The following describe the operation of the Create and Modify
commands in more detail.

The Modify Effort Command

1. The Effort to be modified is looked for in the appropri-
ate TPO. If it is not found, the operation is aborted.

2. A lock is placed on the given Effort. An error condition
will occur if the Effort is locked by a different user.

3. A copy of the Effort branch (with all its PRs) is placed
in the work file. All subsequent editing will be performed
on this temporary copy.

4. A temporary ledger branch is started. This branch con-
sists (at this time) of the Effort name only. All edits
made to the Effort in this session will be recorded in the
temporary ledger branch that will eventually be incorporated
into the permanent ledger at update time.

22

System Algorithms and Operation:
Modification

5. The MODMODE flag is set to TRUE.

The Create Effort Command

1. The destination is checked to ensure the area is legal.
(The area is the only level under which Efforts can be
placed.)

2. The TPO is searched to ensure that an Effort with the
same JON does not exist. (The system thereby ensures JON
uniqueness within any TPO.)

3. A temporary Effort record, consisting of the JON only, is
placed in the work file. No ledger branch is necessary for
Effort creation.

'4. A PR is placed under the temporary Effort record. For
actual Efforts, the PR name is provided by the user. For
planned Efforts, the PR name is constructed internally by
the system and will be "IB7-O" followed by the project number
followed by "P". The project number is taken from the
fourth through seventh characters of the JON.

5. The MODMODE flag is set to FALSE.

After either the Create Effort or the Modify Effort command is
issued, temporiAry records that can be edited and later updated
exist in the work file.

In addition to the creation of Efforts, additional PRs can be
added to an Effort that is being modified or created. This is
done by simply adding another branch under the Effort being
edited (and under the ledger branch if any) with only the PR
number set in it.

Record Deletion

In general, record deletion, much like field removal, is not
the inverse operation of creation. In some cases traces should
be left in the ledger for these activities.

Delete Effort

After creation, actual Efforts have an associated ledger
branch in one of the ledger files. By definition ledgers
cannot be modified in any way; once placed in it, the infor-
mation cannot be removed. Therefore, an actual Effort can-

23

System Algorithms and Operation:
Modification

not be deleted. Only planned Efforts, which have no ledger
associated with them, can be deleted. In this case the sys-
tern will:

1. Ensure that the Effort is not locked by any other
user.

2. Lock the Effort for the given user (to avoid any
attempts from others to access this Effort while it is
being deleted).

3. Delete the Effort branch from the data base file and
update the file.

J4. Remove the lock from the control file. (This look is
meaningless by now since the Effort does not exist any

more.)

Delete PH

A PR can not actually be deleted; however, its operation can
be cancelled. Since traces of that PR exist in the ledger,
the cancellation is accomplished by setting the obligated
amount to 0 (thereby effectively cancelling it) and deleting
the PR record from the Effort. It is a requirement that
every Effort have at least one PR. While this is not
checked at this point (i.e., the last PR may actually be
cancelled), it is checked at update time.

Moving Records

Records sometimes need to be moved from one data base location
to another and eventually out of the data base for final
archival. The Move and Finish commands provide these mecha-
nisms.

Move Effort

Moving an Effort results in moving the Effort record and all
its P~s from one data base location to another. Since Ef-
forts have corresponding ledger information, this informa-
tion may need to move as well. The following files are in-
volved in Effort movement: the source TPO file where the
Effort currently resides, the destination TPO file into
which the Effort is to be moved (which may or may not be
identical to the source TPO file), the source ledger files
where the ledger branches for the Effort currently reside,
and the destination ledger file. (Note that the source led-

24

Z.-F L

System Algorithms and Operation:
Modification

ger branches may reside in more than one file since there
may be more than one ledger file per TPO and the Effort
might have changed the JON in its lifetime.)

Effort movement proceeds as follows:

1. The source is identified as a valid Effort record.

2. The destination is verified to be a legal area.

.3. The Effort is locked. This involves checking that no
other user is currently modifying this Effort and that an
Effort with the same name is not being created in the
destination TPO.

4. All ledger branches, if any, are identified. If the
Effort has changed its JON, this involves all ledger
branches for the previous JONs as well (which may reside
in more than one ledger file).

5. All involved files are opened for write access
(thereby prohibiting access to them while the operation
is in effect).

6. The Effort branch is moved (in the AUGMENT sense) from
source to destination. Then ALL ledger branches are
moved tc the destination ledger file.

7. All involved files are updated (in the AUGMENT sense).

8. The lock is removed.

Note that moving a planned Effort (that does not have a led-
ger) or moving any Effort within the same TPO does not re-
quire any ledger information movements.

Move PR

A PR can be moved from one Effort to another. However, to
avoid any associated ledger problems PR movements are al-
lowed only between planned Efforts that do not have any led-
ger information.

PR movement proceeds as follows:

1. Source and destination Efforts should not be locked.

2. Source and destination Efforts must be planned.

25

L_____________________________.

System Algorithms and Operation:
M~odi fication

3. The PR should not be the only PR of the source Effort
(so that at least one PH remains at the source after the
moving).

14. The destination Effort is checked to ensure that it
does not include a PR with the same number. (PH numbers
are unique at least within an Effort.)

5. The destination Effort is locked.

6. The PR record is moved (in the AUGMENT sense) from
source to destination.

7. All files are updated (in the AUGMENT sense).

8. The lock is removed.

Finish

The data base, as described so far, will be ever increasing
<4 in size. However, most of the information is time dependent

and becomes useless after a while. For example, after a
contract is completed and related activities satisfied, the
information about the contract is no longer needed, at least
not in an immediate online fashion. The Finish command pro-
vides a mechanism with which data can be removed from the
data base and archived.

The Finish command will assemble all information relevant to
an Effort: the current Effort record with all its PRs and
all the ledger branches that were ever associated with this
Effort (even if the JONs were changed). All this informa-
tion will be placed in a newly created file that will be
marked for archival. The original data will be permanently
removed from the data base.

The Finish algorithm is as follows:

1. The Effort is locked to ensure that nobody else is
currently modifying this Effort.

2. A new file is created in the standard FMS directory
whose name is Jxxxxcxxxx-FINISHED, where xxxxxxxx stands
for the current JON of the Effort being finished.

3. The Effort branch is copied to the newly created file.

26

System Algorithms and Operation.
Modification

4I. All associated ledger branches are identified and
copied into the new file following the Effort data (and
at the same AUGMENT level).

5. The new file is updated (in the AUGMENT sense).

6. The file protection is set to 424200B, which will
allow group members to read this file and allow nobody to
write on it. Thus, the file is frozen. In addition the
file is marked for immediate archival.

7. All the associated information (TPO and ledger data)
is now deleted from the data base.

8. All associated files (TPO and ledgers) are updated (in
the AUGMENT sense).

9. The locking information is removed.

Note that there does not currently exist a mechanism to
systematically retrieve the file from the archive and to use
the data stored in it.

Update

Once all modifications to a given record are complete, they must
be incorporated I ito the data base. This is done by the Update
command and entails copying or replacing data into the TPO data
file and may require copying data into the ledger files. In the
process of undating, the JON of an Effort can be changed. (This
is the only place where one can change the JON; see remarks about
the Set command.)

Update Without Renaming

In general, the following occurs when an Effort is updated

(without renaming):

The Effort data is put in the TPO file. In the Create mode
the data is inserted, while in the Modify mode the old Ef-
fort is replaced by the new data.

If the Effort is an actual one, the ledger must also be up-
dated. In the Create mode the Effort data will simply be
copied into the ledger in the appropriate new branch. In
the Modify mode the ledger information in the work file will
be copied into the ledger. The information put in the led-
ger will include a MODIFIED-BY entry that contains the iden-

27

System Algorithms and Operation:
Modification

tifier of the user and the time of update. This information
is inserted automatically by the system without user con-
tr'ol. In addition, a REASON entry is inserted that identi-
fies the reason for the current update. This field is user
controlled.

The following is the detailed algorithm:

1. Verify the current Effort in the work file.

2. Verify the lock information and follow the link contained
in t he lock. (This link points to where the Effort belongs
in the TPO data file.)

3. If ledger activity will be required, check the ledger
files. In the Modify mode the ledger branch Must exist, and
in the Create mode the ledger branch must not exist and will
be created. Prepare the additional information needed for
the ledger.

~4. All relevant files (the TPO file and the ledger file, if
any) are reopened for write (locked in the AUGMENT sense).

5. Data is transferred from the work file into the TPO file
and the ledger files.

6. All files are updated (in the AUGMENT sense).

7. The lock is removed and the work file cleared. (See
description of the Abort command below.)

Update With Renaming

Updating an Effort with a JON change is an operation that re-I quires updating information regarding the old JON and
introducing new information about the new JON. In addition to
the regular update operations, the following occurs upon
renaming an Effort:

An entry is inserted in the ledger of the old JON (in the
REASON field) indicating that the JON has changed and the
EXCEPTION field will contain the new JON. (This operation
is skipped if the original Effort does not have a ledger.)

The information that usually goes to the ledger will go to
the ledger of the new JON. This information will include
the PREVIOUS-JON field with the old JON in it. (This step
is skipped if the new Effort does not need a ledger.)

28

-- S A, -0-- flral-

System Algorithms and Operation:
Modification

The Update Rename operation ia a lengthy one due to the rela-
tively large amounts of data to be transferred and the number
of files involved. In order to secure the data in the work
file, both the Effort and the ledger are re-copied into new
branches in the work tile. This is done because we do need to
change the JON field that is also recorded in the lock (in the
control file). Thus, it the machine somehow crashes in the
middle of the process, the lock and the work tile are still
synchronized and no data is lost (though the user will have to
reissue the Update Rename command).

The algorithm for Update Rename is as follows:

1. Verify the content of the work file.

2. Verity the lock information and follow the link contained
in the lock. (This link points to where the Effort belongs
in the TPO data file.)

3. Make copies (in the work tile) of the Effort and ledger
branches. (These will be the data the procedure works on.)

4. It the old JON had a ledger (i.e., in Modify mode for an
actual Effort), prepare the ledger entry for the old JON.
This entry will include the name of the old JON, a MODIFIED-
BY entry that includes the ident of the user and the time of
change, and a REASON entry that says "JON CHANGED TO" fol-
lowed by the new JON.

5. The TPO file is checked to see that the new JON does not
exist and that an Effort with that JON is not locked. This
ensures that the new JON is still unique within the TPO file
and that another user cannot currently create an Effort with
that JON.

6. The JON field in both the Effort and the ledger branches
in the work file are changed to the new JON. In addition,
if a ledger is being created, a PREVIOUS-JON entry in the
ledger branch is inserted containing the old JON.

7. All destination files are identified (the TPO file and
all destination ledger files) and opened for write access
(locking in the AUGMENT sense).

8. All information is inserted into the appropriate files.

9. All files are updated (in the AUGMENT sense).

29

System Algorithms and Operation:
Modification

10. The lock is removed and the work file cleared. (See the

description of the Abort command below.)

30

. . - - -

System Algorithms and Operation:
Abortion and Validation

Abortion and Validation

Two general mechanisms are provided both in FMS and DES. These are
the Abort and Validate functions.

Abort

The Abort operation results in giving the user a clean work file.
It deletes all the contents of the work file by deleting modifica-
tions (in the AUGMENT sense). In addition, the control file is
checked to see if the user has any Efforts locked and releases
these Efforts if so.

Validate

The Validate command allows the user to check the consistency of
the information in the Efforts residing in the work file. The
system requires validation of the Effort before the Update opera-
tion is performed. Validation is also useful in FMS simulation to
ensure that the suimulated data is consistent.

The Validate command will inform the user of warnings as well as
errors. Errors will prohibit further updates; warnings are for
information only. The validation process will not stop at the
first inconsistency but rather will continue as far as it can.
The following is checked by the Validate command:

All the necessary fields in the Effort record are checked.
These are: JON, title, value, and duration.

All necessary fields are checked for each PR. These are: num-
ber, project, fiscal-year, type of buy, and (any) amount.

The following fields must appear in pairs for each PR: initia-
tion date andi amount, commitment date and amount, and obliga-
tion date and amount.

Estimated start date for each PR must be within the scope of
the contract.

Obligation date of each PR (if it exists) must be within 10
days of the estimated start date (warning).

The sum of the amounts in all PRs of an Effort must not exceed
the the contract face value (warning).

The sum of the man-hcurs in all PRs of an Effort must not ex-
ceed that of the Effort (warning).

31

Ii.

System Algorithms and Operation:Abortion and Validation

The leading PR must have a type of buy: A, B, E, H, I, or K.

PRs are sorted according to estimated start date. (The valida-
tion process will re-sort the PRs if necessary.)

32

II

Data Dictionary:
Introduction

DATA DICTIONARY

Introduction

In FMS, a dictionary contains all the knowledge about fields. This
information includes attributes, syntax, and retrieval algorithms.
The dictionary is a collection of tables along with a set of proce-
dures, as described below. The dictionary is made of three principal
tables. These tables are precompiled and used in a read-only mode:

"fieldnames" table. This provides the mapping between the field
token and the official field name (the one contained in the left
field delimiter).

"fldattributes" table. This contains the attribute information of
all fields.

"fldveproc" table. This provides (indirect) information on the
syntax of the physical fields and the algorithm for evaluation of

logical fields.

The contents of these tables and the fashion in which they are used
are described in the following sections.

33

*~~~~II -4.hg ' . .

Data Dictionary:

Field Attributes

Field Attributes

Every FMS field has a set of attributes associated with it. The fol-
lowing exist:

Exist/notexist. Since tables need not be compacted (i.e., can
have holes), this is a means of finding whether a given token ac-
tually refers to a field.

Physical/logiaal. Physical fields are those that appear directly
in the data base. Logical fields are those values that can be
derived from other data physical fields.

Owning record. An FMS field can belong to an Effort record, a PR
record, or a manpower record. A field cannot belong to more than
one record.

Data type. A field can be of type: string (text), integer,
floating point (decimal), dollar amount, and date.

Shift case. Indicates whether the field contents must be all
upper case.

Removable/nonremovable. Some fields may not be removed from the
owning record. (See the Remove command above.)

The attributes structure is defined in the FMS system as a record
(the ATRECORD) and refers to the information stored in the
FLDATTRIBUTE table. However, users need not access the table di-
rectly because appropriate procedures exist to check all the various
attributes.

34

- - - -- -- ---.. - A&*-r

Data Dictionary:
Field Syntax

Field Syntax

All physical fields have a prescribed syntax associated with them.
The system provides mechanisms to verify the syntax of field content
to ensure that only syntactically legal fields are recorded in the
data base. The syntax for every physical field is verified by
calling a procedure whose address is specified in the FLDVEPROC. The
user need never access this table directly; the two procedures VERIFY
and TFVERIFY provide an interface to these tables.

In the following paragraphs, the syntax for each field is described.
Most of the fields must undergo only a very general verification,
while some need very specific syntax verification. In the general
case the following is checked:

A field must be a string of at least one character and at most
100.

The field may not contain EOLs.

Upper case is enforced if required by the field attributes.

Leading and trailing spaces are removed.

Dollar sign is removed (if it exists) from fields that represent
dollar amounts.

Date fields are checked to ensure that they represent a legal date

(e.g., 29-feb-79 is an illegal date while 29-feb-80 is legal).

Floating point numbers are checked.

Numeric fields are checked to contain digits only. (Commas, if
present, are legal but will be removed.)

The following fields have specific syntax checks in addition to the
general verification described above:

JON: 8 letters or digits, possibly preceded by a "J" (which will

be removed).

Title: 25 characters maximum.

Duration: 1 or 2 digits only.

Manyears: 1-5 digits with one optional decimal place.

Priority: 1 to 3 digits.

35

Data Dictionary:
Field Syntax

Contract: acceptable syntax (described in content-analyzer
syntax) is:

UL 5LD '-2LD 'UL ' 4LD
UL 5LD'-2D -D 4-AD
5UL '-2D - 4D

Tech: 1 to 3 digits.

Task: 2 letters or digits.

Type: A, B, C, E, F, G, H, I, K.

Line: 1 to 3 digits.

Number: acceptable syntax is (L stands for any letter, D for any
digit, - for a dash, and T for the letter IT'):

L--DDLDDDLDDD, -DDLTDDL -- DD
L-D-DDDDL, L-DDDDD, L-DDDDL, L-DDDD, L-DDDDL, LTDDDD,

DDDDL, LT-DDDD, LTDDDDL, LTDDDD

Project: £4 letters or digits.

Fiscal year: 2 digits or 'ITT".

Der (Daily Expenditure Rate): numbers separated by semicolon and
spaces (which will be removed)

36

Data Dictionary:
Logical Field Extraction

Logical Field Extraction

Logical fields are those that are not explicitly stored in a record
but can be evaluated basea on the physical fields of the record. An
algorithm is therefore associated with each logical field that
defines the way it is computed. Internally, there is a set of
"evaluation procedures", one for each logical field. Each of these
procedures accepts as an argument the STID of the record in question
and returns, in a string format, the value of the logical field. The
addresses of these procedures are kept in the FLDVEPRQC table. Users
do not have to access this table directly; the low-level field re-

trieval procedures (such as GETFIELD) provide the appropriate mecha-I nisms. Hence, the distinction (at retrieval time) between physical
and logical fields is completely transparent.

In principle, if a logical field cannot be evaluated, it is consid-
ered an empty field. However, since most of the logical fields rely
on more than one physical field, it may be useful for the user to
know why a logical field cannot be evaluated. The evaluation proce-
dure will therefore generate a signal (of type SIGLOGICAL) along with
an error string explaining the nature of the problem.

The following is the description of the various algorithms that are
used to evaluate logical fields:

AMOUNT: This is the most advanced amount information available,
i.e., obligated, -ommitted, initiated, pre-initiated. (Obligated
is the most advanozed.)

FISCAL-YEAR: This is the fiscal year in which the estimated start
date falls.

PROGRESS: This is the procurement state, i.e., obligated, commit-
ted, initiated, and pre-initiated.

PROJECTION: This is the expenditure projections of a given PR.
For the type of buy C, E, F, G, H, K, this is the most advanced
amount (see AMOUNT above). For type of buy I, the projection is
zero. For type of buy A or B, the projection is essentially the

product of the daily expenditure rate and the length of the PR in
days. If more than one PR exists, the daily expenditure rate is
computed by using the the DER field (see below). The projection
amount is always limited by the VALUE of the contract.

DER: This is the Daily Expenditure Rate and is computed by
dividing the PR amount by its duration in days. The PR amount is
computed as in AMOUNT above. The duration of the PR is the number

37

Data Dictionary:
Logical Field Extraction

of days between the estimated start date (or obligation date if
obligated) and the end of fiscal year or the end of contract,
whichever comes first.

LENGTH: This is the length of the PR in days. It is the number
of days between the estimated start day and the end of fiscal year

or end of contract, whichever comes first.

SOWDUE: Computes the SOW due date. It is the Effort start offset
by a given amount based on the type of buy of the leading PR.

DURDAYS: Duration of contract in days. This is the product of
the duration of the contract in months and 30.44 (which is the
average days per month).

START: The Effort start day. This is the estimated start day of
the leading PR.

TERMINATION: This is the contract's termination day. It is the
start date plus the duration of the contract (START+DURDAYS).

EFFWRITEUP: This is a one-statement description of the contract.
Used mainly for reporting. The Effort writeup may be found in a
special Effort writeup file that is outside the FMS data base.

38

7 ~ . t~ .:i r.7 1

Data Dictionary:
Field Descriptions

Field Descriptions

Introduction

The following table describes valid fields in FMS; information in
the table is arranged in columns. In the OWN column, we designate
in what record the field appears (EF for Effort, PR for PR, MP for
manpower). In the P/L column, P indicates a Physical field and L
a Logical. In the TYPE column, we indicate the data type (S for
string, I for integer, F for floating point, $ for dollar amounts,
and D for date). In the Notes column, we designate I for internal
(i.e., not user-settable), NR for nonremovable field, and LC if

lower case is allowed.

Token: Official Name OWN:P/L:TYPE:Notes: SYNONYM

1 JON EF P S NR

2 TITLE EF P S LC,NR

3 VALUE EF P $ NR

4 ENGINEER EF P S

5 PRIORITY EF P I PRI

6 DURATION EF P I NR DUR

7 MAN-YEARS EF P F MANYEARS

8 CONTRACT EF P S

9 PERFORMER EF P S

10 TECH EF P S

11 TER EF P S

12 PAID EF P $

13 IN-PROGRESS EF P $ INPROGRESS

14 UNLIQUIDATED EF P $

15 CORE-TEMP EF P S CORETEMP

16 ALT-TASK EF P S ALTTASK

39

Data Dictionary:
Field Descriptions

17 SECTION EF P S

18 MANPOWER-LINK EF P S MANPOWERLINK

19 WRITEUP-LINK EF P S WRITEUPLINK

20 BUYER EF P S

21 EXCEPTION EF P S

22 ACD EF P S

23 RC-CC EF P S RCCC

24 ACCESSION EF P S

25 COSATI EF P S

26 REASON EF P S LC,I

27 PREVIOUS-JON EF P S I

28 MODIFIED-BY EF P S I MODIFIEDBY

36 SOWDUE EF L D

37 DURDAYS EF L I

38 START EF L D

39 TERMINATION EF L D TERM

40 NEWSTARTS EF L D

41 EFFORT-WRITEUP EF L S EFFORTWRITEUP

42 MPYTD EF L F

43 MPPREV EF L F

44 MPTOTAL EF L F

51 NUMBER PR P S NR

52 PROJECT PR P S NR PRJ

53 TASK PR P S

40

Data Dictionary:
Field Descriptions

54 FY PR P S NR

55 ESTIMATED PR P D

56 TYPE PR P S NR T

57 PREDATE PR P D NR

58 PREAMOUNT PR P $ NR

59 INITDATE PR P D

60 INITAMOUNT PR P $

61 COMDATE PH P D

62 COMAMOUNT PR P $

63 OBLDATE PR P D

64 OBLAMOUNT PR P $

65 PEC PR P S

66 LINE PR P S

67 SOURCE PR P S SRC

68 USER PR P S

69 LEAD PR P S

70 BPAC PR P S

71 ACCESSION PR P S

72 COSATI PR P S

74 BUYING-AGENCY PR P S BUYINGAGENCY

75 TPO-LINK PR P S TPOLINK

76 PR-EXCEPTION PR P S PREXCEPTION

77 MER PR P F

78 PR-TITLE PR P S LC

41

Data Dictionary:
Field Descriptions

79 PRMANHOURS PR P F

85 AMOUNT PR L $

86 FISCAL-YEAR PR L S FISCALYEAR

87 PLANNED PR L S

88 ACTUAL PR L S

89 PROGRESS PR L S

90 PROJECTIONS PR L $

91 DER PR L F

92 LENGTH PR L I

101 IDENT MP P S

102 PERIOD HP P D

103 CHARGE MP P F

104 YTD MP P F

105 PREVYEARS MP P F

42

Miscellaneous Data Structures

MISCELLANEOUS DATA STRUCTURES

The following data structures are used in various parts of FMS and DES.

Field Token

This is an integer that is being used to designate an FMS field type.
It is in fact an entry point into all the tables in the dictionary.
Thus, when the field token is known, the name, attributes, and syntax
can be extracted. The procedure FLDCONVERT converts field names
(both official and synonyms) to field tokens.

Tpoindex

This is a shorthand used to transfer TPO file pointers. It is used

mostly before a TPO has been accessed (such as from the CLI to the

BE). In other cases, an STID to the file is used. The tpoindex is
an index into the plex of statements in the TPOS branch of the con-
trol file. For example, tpoindex=2 refers to the TPO file that is
pointed to by the link that appears in the second statement in the
TPOS branch of the control file. Note that two different TPO indices
can actually point to the same TPO file.

Arrays

Arrays are represented in the FMS system as a word count followed by
the appropriate number of words. The most commonly used array is the
source array. This irray includes STIDs of different branches in the
data base. The sequence generators usually use array information to
generate the appropriate records sequence. Of particular interest is
the transfer of the source array from the Frontend to the Backend.
The information is collected in the Frontend using an FEFUNCTION
which packs the sources into a list. Each entry in the list
corresponds to a branch. The CNVSOURCES procedure in the Backend
will convert this appropriately to the standard array format.

PR Handle

In the process of modifying PRs it is likely that the same PR will be
referenced over and over again. Instead of searching for the PR re-
cord in the work file by name (and possibly searching for its work
file ledger branch too), a PR handle is used. The PR handle can take
one of the following forms:

A zero: designates the last referenced PR. (The appropriate
STIDs are stored in the globals WPRSTID and LPRSTID.)

43

Miscellaneous Data Structures

A list whose first element is zero: Element 2 will contain the
STID for the PR record in the work file and Element 3 of that list
will contain the PR ledger record STID in the work file (if any).

Anything else: is a simple CML literal selection.

The procedure CNVPRHANDLE converts a PR handle to a pair of STIDs.
The procedure MKPRHANDLE converts a pair of STIDs to a PR handle.

Lock Structure and Lockstid

Locks are stored in the work file according to the syntax described
above. In order to pass and parse lock information, locks can be
represented in a data structure similar to the one used by AUGMENT
for parsed links. A lock is generally represented by an STID that
points to the appropriate statement in the work file. After being
passed to the LOCKPARSE routine, a data structure is returned that
contains text pointers that delimit the fields of the lock: JON,
ident, date, time, link, mode, and comment. A variety of procedures
exist to manipulate the various lock fields.

'44

Appendix: User Procedures and Variables

APPENDIX: User Procedures and Variables

Introduction

This is a list of all FMS user-level procedures. Only very short
descriptions are given here. Refer to the source code for more
detailed information. The procedure and variable names have been
grouped according to function.

Command execution routines. These are the top-level procedures
that execute the appropriate commands. They are usually meant to
be called from the AUGMENT Frontend only. They call the internal
support routines. If you want to trace a command execution, start
at these procedures.

Command core routines. This is where commands are actually exe-
cuted. There is almost a one-to-one correspondence with commands.
They are meant to be user-level callable, i.e., Frontend indepen-
dent.

File system operations. These procedures support moving and
searching within files of the data base, getting information about
files (names, inversion number, etc.), and providing special
interfaces to the AUGMENT file system when required.

Data base checking (fields and files). This set of procedures
tests various aspects of the data base, including attributes of
fields and proper ies of records and files.

Field manipulation. This set of procedures provides all that is
needed for the user to extract or modify fields of records in the
data base.

Data conversion. This set of procedures provides for data conver-
sion between different data types (e.g., dates to strings) and
different data .5tructures (such as sources and arrays).

Utility. Here ve have grouped procedures that might be of use to
a system programmer and that are of a general nature. The various
FMS operations rely on these procedures.

Arrays, sequence generators, filters. Here we present the set of
procedures that correspond to the filters, sequences, and sort
keys used by FMS.

Locks. This set of procedures performs the lock-related services:
setting, deleting, and parsing lock information.

Data. We have included here the names of global variables that

45

- -, -- *1* ~ 'A

Appendix: User Procedures and Variables

may be of use when interfacing to other standard procedures. This
list is by no means complete. The Data file contains a complete
list. Most of these variables are read only. Users should double
check before they program anything that changes any of the global
variables.

Command execution routines

Abort: xxabort

Cancel PR: xpcancel

Copy: xfmscopy

Create Effort: xecreate

Create P: xpecreate

Delete Effort: xedelete

Display: xdisplay

Find: xfind

Finish Effort: xefinish

Generate: xgenreport

History: xhistory

Increment/Decrement: xxincfield xincall

Initialization: cmninit, desinit, fmsinit

Modify Effort: xemodify

Move Effort: xemove

Remove Field: xremfield

Reset: xfreset

Scroll: xscroll

Set Field: xxsetfield

Show Status: xstatus

Show: xfshow

46

.... " _- ' : -t " - : . 7 .- " -

Appendix: User Procedures and Variables

Simulate Effort: xsimulate

Sort Effort: xeffsort

Sum: xsum

Termination: xxfmsterm

Update: xwfupdate

Validate: xvalidate

Command core routines

Display: edisplay

Finish Effort: cefinish

Find: cfind

Generate: cgenreport

Increment/Decrement: cincfield

Remove: cremfield

Set: csetfield

Update: cwfupdate

File system operations

fileversion - gets the file version number given STID

findcontent - finds the next occurrence of content

findeffort - finds an Effort based on several criteria

findfbcontent - finds the content in branch

findname - looks up a (FMS) statement name in a data file

findpr - looks up a PR number in a branch

fmsdelmod - deletes modifications to data file

fmsopen - opens an FMS file

fmsupdate - updates and closes a file

47

Appendix: User Procedures and Variables

getfilename - gets a data file name

gethiversion - gets the highest version of a file

getledger - finds or creates a ledger branch

getmpfile - finds an MP file given Effort file

getmprecord - finds an MP record

gettpostid - converts TPO index to STID

cnvtpo - converts TPO name to index

gtversion - gets the version number given jfn

leadpr - evaluates the leading PR

opencontrol - opens control file

stdinbranch - checks whether an STID is in branch

wrtopen - re-opens an FMS file for write

Data base checking (fields and files)

checkfield - checks whether a statement contains a field

checkpr - checks the project, pec, and fy of a PR

checkwf - checks contents of work file

chkpair - checks a pair of fields

chkprfilter - filters to checks the project, pec, and fy

haspr - checks whether an EFFORT has a PR of a given kind

isactual - TRUE if statement is an actual EFFORT

isarea - TRUE if statement is an AREA head

isdate - TRUE for fields of type date

isdollar - TRUE for fields of type dollar

isefffield - TRUE for Effort fields

iseffort - TRUE if statement is an EFFORT

48

I
Appendix: User Procedures and Variables

isfield - TRUE if type is a field

isfloat - TRUE for fields of type floating point
9

isgroup - TRUE if statement is a GROUP head

isinhouse - TRUE if statement is an in-house EFFORT

isinteger - TRUE for fields of type integer

islefffield - TRUE for logical EFFORT fields

islogical - TRUE for logical fields

islprfield - TRUE for logical PR fields

ismp - TRUE if statement is a MP

ismpfield - TRUE for MP fields

isninhouse - TRUE if statement is NOT an in-house EFFORT

isnonremovable - TRUE for nonremovable fields

ispefffield - TRUE for physical EFFORT fields

isphysical - TRUE for physical fields

isplanned - TRUE if statement is a planned EFFORT

ispprfield - TRUE for physical PR fields

ispr - TRUE if statement is a PR

isprfield - TRUE for PR fields

isproduct - TRUE if statement is a PRODUCT head

matchfield - checks whether a field in a record equals a value

Field manipulation

getfield - extracts a field from a record in string format

getlogical - computes a logical field

getvalue - extracts a field value according to data type

putfield - puts a field into a record

49

t _ 1

Appendix: User Procedures and Variables

setfield - sets a field in a record

setpointers - sets pointers around a field

Data conversion

cnverr - calls err with conversion message

cnvmsg - prepares a conversion message

cnvprhandle - converts PR handle

convert - converts a CML record into an L1O string

convfi - converts a floating point number to an integer

convfs - converts a floating point number to a string

convif - converts an integer to a floating point number

convsf - converts a string to a floating point number

date - converts a string to a TENEX date integer

fldconvert - converts a field name to a field type

fyconvert - converts a date into a 2-digit fiscal year

mydate - converts a TENEX date integer to a string

Utility procedures

cleanwf - cleans out the work file

cmninit - initialization procedure

fmssort - FMS sort core routine

fydays - computes the number of days in a fiscal year

fydistance - computes distance a fy is from a base year

fyend - computes the last day of the given fiscal year

fynext - computes the next fiscal year from the given one

jumpto - jumps to a statement

makejon - creates a job-order-number from a data file

50

Appendix: User Procedures and Variables

makelink - builds a link to an STID

makepr - creates a new PR

maketest - makes a test on Effort

mkprhandle - makes a PR handle

planstr - makes a planned PR number

prcreate - creates PR in work file

prdays - computes length in days for a PR given start day

tempcmpl - compiles a display template internally

testrelation - tests a relation between field and value

verify - verifies that a value is legal for a field

Arrays, sequence generators, filters

fmsskey - general sort key

scrlfilter - scroll command filter

temapply - filter applying a template to a statement

cnvsources - converts entries into sources array

mksrcseq - opens a sequence for sources array

srccheck - checks source arrray consistency

mkldgarray - makes an array of ledger branches

Locking related procedures

checklock - checks for lock

gtlkcomment - extracts the value of COMMENT from lock

gtlkdate - extracts the value of DATE from lock

gtlkdtm - extracts the value of DATE and TIME from lock

gtlkident - extracts the value of IDENT from lock

gtlkjon - extracts the value of JON from lock

51

Appendix: User Procedures and Variables

gtlklink - extracts the value of LINK from lock

gtlkmode - extracts the value of MODE from lock

gtlktime - extracts the value of TIME from lock

gtlkvalue - extracts a value from lock

lockeffort - locks an Effort

lockparse - parses a lock

makelock - makes a lock entry

unlckeffort - unlocks an Effort

Data (variables and constants)

Miscellaneous

wforigin - origin statement of work file

ctrlstid - origin statement of control file

ltpoindex - last tpoindex referenced

maxtpoindex - maximum TPO index

modmode - TRUE in Modify mode, FALSE in Create mode

globstring - used for global string values

globproject - current PROJECT requested

globpec - current PEC requested

globfy - current FY requested

siglogical - logical fields signals

maxfld - index of highest field

Access levels

fmsaccess, desaccess, superman

Data base statement levels

prdctlevel, grplevel, arealevel, efrtlevel, prlevel

52

'-7----

Appendix: User Procedures and Variables

Ledger searching modes

ldgfind, ldgany, ldgcreate

Lock-related constants

Lock components

IkJon, Ikident, lkdate, lktime, lkdtm (date and time), lklink,

lkmode, lkcomment

Offsets into the lock data structure

lkjs - Jon start

lkje - Jon end

Ikis - ident start

lkie - ident end

lkds - date start

lkde - date end

lkts - time start

lkte - time en

lkls - link start

lkle - link end

lkms - mode start

lkme - mode end

lkcs - comment start

lkce - comment end

Control file branches

cbaccess - ACCESS

cbbuiltins - BUILTINS

cbledgers - LEDGERS

53

IM

Appendix: User Procedures and Variables

cblocks - LOCKS

cbmanpower - MANPOWER

cbnumbers - NUMBERS

cbrecognized - RECOGNIZED

cbreports - REPORTS

cbtemplates - TEMPLATES

cbtpos - TPOS

Filter and report types

cwbuiltin, cwrecognized, cwat, cwtypin, cwfirst

Relation codes

cwpresent, ewabsent, cwequal, cwgreater, cwless

54

L -AaL- -til

MISSION
Of

Rome Air Development Center
R AVC ptan,6 and execwte,6 kaeea'Lch. devetopment, takt and
,setec-ted acquJ..6Ltion p'Log~m in qpot o6 Command, ContAot

*Communkcation6 and lnteLigence (C31) acivtie&. TechnicaZ
and engineeting ~Auppo'tt within alteaz o6 technicat competence
i6 pkouided to ESV Pkogtam Cd diceA (POd) and at her. ESV
etementz. The p'r.ZnciZpat teehnicat mizison aAeau au
communcaton6, etecttomagne. guidance and confAot, .6uAL-
VeZ~tance o6 g4ound and ae'ro.6pace objects, intelttience data
coUection and handting, indo~mation sy.6tem technotogy,
iono~spheic pr~opagation, 6otid 4tate ac.Zeneea, micAotwe
phy.6c and eter,'Lon. 4eZiabitity, mctintainabitty and

* cornpa-tibZZZty.

